
I -Allb 25 SOFTECH INC DAYTON OH G
AAIA JOVIAL J73 PROGRAMMING SUPPORT LIBRARYfu)

UCLA 42 A .J CRUSC ICKR! L SIMPSOIJ R SHEFFIELD F30602 P0 C- '44

INLSSIFIED RAOC-TR 82-162 N

rM4

-WOMEN"

UNCLASIFIED
SECURITY CLASSIFICATION OF THIS PAGE (Whaen DatEntered)

REPORT DOCMENTATION PAGE BFRECOPLTI ORK
I. REPONT NUM017112 GOVT ACCESSION MOJ RECIPIENT'S CA-TALOGNUM#BtR

4. TITLE (nd Sbtttfe) S. TYPE OF REPORT & PERIOD COVERED

JOVIAL J73 PROGRAMIING SUPPORT LIBRARY Final Technical Report
Jul 80 - January 82 R41. PERFORMING ONG. REPORT MUMBE

7. AUTHOR(*) . CONTRACT ORt GRANT NUMSER(s)
Andrew J. Cruscicki, RADC
Louis Simpson, Sof tech P30602 -80-C-O244
R. Sheffield, Sof tech
9. PERFORMING ORGANIZATION NAME AND ADDRESS TS. PROGRAM ELEMENT, PROJECT. TASK
Sof tech, Inc. AREA & WORK UN IT NUMBERS

FSD 63728F
Dayton OR 45401 25320208
11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

RomeAirDeveopmnt ente (CEE)June 1982
RomeAir eveopmet Ceter(COE) 1. NUMBIER OF PAGES

Griffiss APB NY 13441 64
14. NONITORING AGENCY NAME A ADDRESS(iI diffoent, froan Conltroling Office) 1S. SECURITY CLASS. (of thls report)

Same UNCLASSIFIED
ISO. DECLASSIFICATIONI DOWNGRADING

N14SCHEDULE
16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited

17. DISTRIBUTION STATENENT (of thle asracetedred in Black 20, it dif1ferent freem Raport)

Same

IS. SUPPLEMENTARY NOTES

RADC Project Engineer: Andrew J. Cruscicki (CORE) *

19. KEY WORDS (Ctme an reverse aide It necesar and identify by block nurmb")

Program Support Library Computer Software
Configuration Control & Management Software Documentation

Software Development Environsent Top-down Programing

20. ABSTRACT (Conthins an rover., side It necessar and identify by block number)I

e JOVIAL 373 Programing Support Library (J73 PSL), an environment f or the

orderly creation of J73 Software Systems, is presented. This technical report
has bean developed as a self-contained/stand-alone document. That is, the TR
first presents a thorough contract overview followed by a discussion of the
technological concepts (i.e., Top-down programming and segmentation) incorporate
a features of the J73P5L. A brief coemand verb sumimary them proceeds a section
devoted to the relationship between the J73PSL and configuration control and

LMBM~tTh r lder of the TR is devoted to certain project tasks =J

D0'OPI"71 1473 EDITION Of I NOV 5515 OBISOLERTE UCASFE

SECURITY CLASSIFICATION OF THIS PAGE (Whaen Dae NateeO

;. .7

UNCLASSIFIED
SCCUITY CLAWFIICATI@N1 OF TWIS PA@EI'Whm , . En,.

9 ollowed by a discussion of perceived future directiosa for this technology.

A ICCOSSSSn For

SMISIT CLAPCAI FY.CP@3Wmaa ,u

DTI TAB

Unannounce

Justiicati

TABLE OF CONTENTS

Section Title Page

1.0 Background and Introduction 1-1

1.1 J73 PSL Software Design Requirements 1-3

1.2 Study of PSL-like Systems 1-10

1.2.1 PAVE PAWS PSL .. 1-11

1.2.2 Microprocessor Software Engineering Facility (MSEF) 1-12

1.2.3 Software Design Verification System (SDVS) 1-12

1.2.4 IBM Structured Programming Facility (SPF) 1-14

1.2.5 UNIX Programmer's Workbench (PWB) 1-14

1.2.6 EXEC 8 Operating System 1-14

2.0 JOVIAL J73 PSL Programming Environment 2-1

2.1 Top-down Programming and Segmentation 2-1

2.2 Module and Hierarchy Listings 2-2

2.3 Hierarchial Library 2-2

2.4 PSL Authorization Checking 2-3

2.5 Management Statistics Reporting 2-6

2.6 J73 PSL Directives 2-10

2.6.1 ADD 2-10

2.6.2 CHECKPOINT ... 2-10

2.6.3 COMPILE 2-10

2.6.4 COP Y ..COP....... 2-10

2.6.5 EXPORT ... 2-10
2.6.6 IMPORT .. 2-10

2.6.7 LIBRARY..... .. 2-11

2.6.8 LIST........,.. 2-11

2.6.9 LOAD 2-11

2.6.10 MODIFY 2-11

Mi

Il

Secti on Title ?Me

2.6.11 NEWLIB ... 2-11

2.6.12 PERFORM ... 2-11
2.6.13 PURGE 2-11

2.6.14 QUIT....,.. 2-11

2.6.15 RUOTRT.. 2-12

2.6.16 RESTORE .. 2-12

2.6.17 SEA R .. 2-12

2.6.18 USER 2-12

2.6.19 XMIT... 2-12

3.0 JOVIAL J73 PSL Configuration Control Capabilities 3-1

3.1 Configuration Control 3-1

3.2 Configuration Integrity 3-1

3.3 Change Control 3-3

3.4 Status Monitoring 3-5

4.0 Detailed Design .. 4-1

5.0 Testing ... 5-1

6.0 User Indoctrination 61

7.0 Suggested Enhancements 7-1

7.1 Major Enhancements Requiring a New Design 7-1

7.1.1 HELP/Tutorial Facility 7-1

7.1.2 Traceability Reports7-1

7.1.3 Software Problem Reports 7-2
a

7.1.4 Directory Command 7-2

7.1.5 Edit Capability for Listings 7-2

7.1.6 Reduction of Load Module Size 7-2

7.1.7 An Enhanced Text Editor 7-2

7.1.8 Improved Tool Interfaces 7-3

iv

Section Title Page

7.1.9 Data Protection 7-3

7.1.10 Direct Use of System Editors 7-3

7.1.11 Direct Interactive Job Submission 7-3

7.2 Minor Enhancements Which Can Be Implemented Under the
Present Design 7-3

7.2.1 Improved Messages 7-3

7.2.2 Stand-Alone FORTRAN and ASSEMBLER Batch Execution 7-3

7.2.3 Abbreviations for Commands and Parameters 7-3

7.2.4 Lower Overhead for Entry to the PSL 7-3

7.3 Unimplemented Features 7-4

7.3.1 Changing the Master Key with the RESTORE Directive 7-4

7.3.2 Make the Link Control Segment in LOAD Optional 7-4

7.3.3 Implement the JAVS Interface 7-4

7.3.4 Implement the 1750A Tools Interface 7-4

7.3.5 Implement the Code Auditor Interface 7-4

7.3.6 Route Results of REPORT and LIST Directives to the
Printer .. 7-4

7.3.7 Implement the EXTRN Routing Parameter in PERFORM....... 7-4

7.3.8 Route JOCIT Compile Output into the PSL Database 7-4

7.4 Persistent Bugs 7-4

7.4.1 Parallel ADD ... 7-4

7.4.2 PSL Library Capacity 7-4

7.4.3 Formatting Problem in COMPILE, PERFORM, and LOAD
Listings... 7-4

v

1 __________

LIST OF ILLUSTRATIONS

Figure 1-1 J73 Database Structure 1-5

Figure 2-1 Hierarchy Listing 2-3

Figure 2-2 PSL Levels 2-5

Figure2-3 REPORTSEGMENTSSummaryo....................o 2-7
Figure 2-4 REPORT MODULES Summary 2-8

Figure 2-5 REPORT PROGRAMS Summary 2-8
Figure 2-6 REPORT LIBRARY Summary 2-9

Figure 3-1 J73 PSL Database Structure (Repeat of 1-1) 3-2

Figure 4-1 Major Modules in PSLMAkIN..............00........... 4-3

4V

Vi t

1.0 BACKGROUND AND INTRODUCTION

The JOVIAL J73 Programming Support Library (J73 PSL) was a fixed

price level of effort acquisition by the Rome Air Development Center

(RADC) of the Air Force to SofTech's Federal Systems Division requiring

system design, development, test and maintenance within 1.5 years of

contract award. It included a state-of-the-art PSL study, software design,

development and test, user training, maintenance, and enhancements.

The J73 PSL provides configuration control for development and

maintenance of JOVIAL J73 software systems. Storage is provided for

source code, statistics, documentation, design, object modules, load

modules, symbol tables, and listings. Within the J73 PSL the user can

create, modify, compile, link, and execute code. Statistical data is

automatically collected and maintained in the database. Reports are

generated which analyze the statistical data on a segment, module,

program, or entire library basis. Seven levels of configuration control

are provided, in which parallel datasets of each of the types (source,

object, documentation, etc.) are stored. Authorization to read and

write at the different configuration levels is strictly controlled.

Interfaces to J73 compilers, support compilers (FORTRAN, host assembler),

and other software tools are provided.

The project began with a study of existing Program Support Libraries.

SofTech subcontracted part of this study to General Research Corporation

of Santa Barbara, California. The results of the study were included

in the PSL Interim Technical Report and sumarized below. Of the seven

studied, the PAVE PAWS PSL was chosen as a design baseline. It was

believed that direct translation of much of the PAVE PAWS PSL code,

even though it was hosted on a different computer and written in a

different dialect of JOVIAL, would be possible.

A Functional Description was written, in which the requirements of

the Statement of Work were matched to PAVE PAWS PSL directives, newly

designed directives, or to database design. An efficient implementation

of the requirement for a hierarchy of seven library levels to hold a

number of different kinds of data on each level was chosen. Although

the PAVE PAWS PSL proved to be a good design baseline, direct trans-

lation proved to be an obstacle and in the later stages the project

became a straightforward software development effort. f.

A System Subsystem Specification was published, in which the design

details of the main J73 PSL program were delineated. While this design,

with some revisions, was implemented in the PSL, five additional indepen-

dent programs were also written to carry out some functions during

independent batch execution. A major feature of the J73 PSL is the

spawning of batch background jobs--to provide a standard interface to

run compilers, linkers, etc--and these additional programs were necessary

to process data in conjunction with these batch background jobs. The

PSL as implemented consists of four independent JOVIAL J73 programs,

the main PSL program comprising about 95% of the code. In addition, two

short FORTRAN programs are used to route listings. The main PSL program,

called PSLMAIN, consists of 81 independently compilable modules, of

which 65 are written in JOVIAL J73, eight in FORTRAN, and eight in

IBM assembler. FORTRAN and assembler routines primarily serve to
accomplish I/O operations, since JOVIAL J73 has no I/O in the language.

Section 4 (Detailed Design) briefly describes each program in the PSL

system and each module in the largest program of the system, PSLMAIN.

Section 5 (Testing) describes three phases of testing--unit,

integration, and qualification--and the testing criteria which were

common to all three. Common testing criteria included testing both

legal and illegal inputs, checking correct program execution, and

testing capacities and boundary conditions. In addition, integration

testing, which involves the first attempt to operate the developing

system as a whole, uncovered interfacing problems. Qualification

testing systematically tests each function of the system as it relates

to requirements in the Statement of Work. Techniques include visual

inspection of code and documentation, operation of the PSL in both batch

and interactive modes, and use of the system commands to look at the

results of the PSL from outside the PSL.

Section 6 (User Indoctrination) describes the training class held

at ASD on October 20-24, 1981. The first two days were lecture and

the last two were primarily laboratory. The first laboratory day was

devoted to program development using a preexisting PSL database, while

the second laboratory emphasized the management aspects of the PSL.

1-2

I.,I I I I i E _ I U W I - m i I __ ii

Section 7 enumerates maintenance tasks and possible enhancements

which could be negotiated. Tasks to be completed during maintenance

include publishing the Program Specification and the Program Maintenance

Manual, updating documentation which goes into the former, delivering

the PSL software, and dealing with numerous small but important problems

which still remain. Possible enhancements include a directory command, a

software problem report (SPR) generator, and a requirements traceability

matrix generator.

1.1 J73 PSL Software Design Requirements.

The PSL Statement of Work (SOW) describes requirements which must

be met by the J73 PSL. These requirements are intended to meet the

JOVIAL J73 programing support needs through the introduction of a modern

software engineering tool. The SOW requirements and the J73 PSL's

specific implementation of them are discussed in the following paragraphs.

The PSL must be written in JOVIAL J73, according to MIL-STD-1589B.

Exceptions could be made for significant reasons, but any exception had

to be approved by the sponsoring agency. Since JOVIAL J73 has no input/

output, the I/O routines were written in FORTRAN and assembler.

The PSL must provide seven library levels which are structured in

a vertical hierarchy. As code matures, the user shall have the capa-

bility of transmitting the code to a higher library level. The user

will be able to transmit modules, which consist of all source segments

which make up a J73 module, plus the associated text and statistics

* segments, to a higher level in the PSL by the XMIT directive. The

seven levels provide a structure for configuration control of a develop-

ing and/or operational software system. Each library level has usage

1-3

conventions which limit what actions may be performed on code. These

usage conventions are established by the program manager at project set-

up time. The lowest level could represent the most unrestricted area

and the highest level could be the most restricted. Typically, pro-

grammers are allowed access to the lowest levels and the program

manager to the highest levels where the released software resides.

The SOW requires an automatic drawdown feature to be used in the

transmission of code to a higher level. Automatic drawdown means that

a segment group is copied from a higher to a lower level when the need

arises. If not.all the segment groups which comprise a module exist

on the level from which the user wishes to transmit the module, the

missing segment group will be copied to the lower level at that time by

automatic drawdown.

The PSL must provide storage capability for source modules, textual

data, and object modules. Each PSL library level will have these

types of segments as well as other types as shown in figure 1-1. A

J73 source code module may be one segment or a group of segments that

are related by !COPY statements in the code. Source segments may also

contain source code for other languages: FORTRAN, PDL (Program Design

Language), or assembler. The !COPY keyword may also appear in source

segments of these other languages; it will serve here also, as in the

case for J73 source code, to provide for combination of segments into

a module. Data for input to a program will be stored as a source seg-

ment, as will linker control commands. Textual data, intended to be

documentation for a source segment, will be stored as a segment of

type TEXT. Each segment of type SOURCE will have a TEXT segment

associated with it. Object modules will be stored As segments of type

OBJECT. There will also be segments of type LIST (for compiler,

assembler, or other output), LOAD (for program execution code), and

SYMTAB (for symbol tables produced during compilation of-J73 source

modules). Segment groups may only be created by the ADD directive or

as stubs due to a !COPY string in the source segment. Thus top-down

design is facilitated.

1-4

/
PROJECT C

PROJECT B
- ' C' THE PSL DATABASE

DEL

FRZ

TST

FIX

INT

GRP

PRG
LOAD

YMBOL TABLE

ISTING ONE

6OBJECT PSL
.)STATISTICS LIBRARY

*TEXT

6SOURCE

Figure 1-1. J73 PSL Database Structure

1-5

- i

The J73 PSL must permit the user to name and rename the keywords

and usage conventions associated with each library level. There must

be a way to define user restrictions on a PSL verb basis at the various

library levels. The PSL implements these requirements in the following

manner. After initializing a PSL library with the NEWLIB directive,

which establishes the user as the manager of that library, the manager

may set up the library level keywords and usage conventions by modifying

two special segments. The segment AUTHORIZATIONS will contain infor-

mation in a specific format which establishes the USERIDs to be asso-

ciated with a number of usage groups. The manager defines for each

usage group the access levels for each directive verb. The segment

KEYWORDS defines the names of the seven library levels and also

establishes keywords to be employed in TEXT segments. The manager may

redefine user restrictions, level keywords, and text keywords by

modifying the AUTHORIZATIONS and KEYWORDS segments.

The PSL is required to perform multi-library-level searches for

the purpose of compilation or for linking loadable object code. The

implementation of the PSL will combine source segments into modules

during processing of the !COPY keywords in the source. The linker,

when invoked by the LOAD directive, will do an automatic search of all

object segments in the designated PSL library.

The J73 PSL must interface with the JOVIAL J73 compiler and at

least five additional compilers. The PSL directive, COMPILE, invokes

any one of the following: the default J73 compiler, the host FORTRAN

compiler, or the host assembler. Which of the three is invoked is

determined by the language of the source module being compiled. Options

for a compiler or assembler may be specified by using the options

parameters. Other versions of compilers, or compilers for other

languages may be invoked through use of the PERFORM directive, provided

their interfaces have been implemented. An interface consists of code

which modifies a job control statement and sends out a spawned job.

The PERFORM directive has OPTION parameters which serve the same pur-

pose as the OPTION parameters of COMPILE.

1-6

• - ; , . ," . ..

The PSL must provide seven keywords to describe the program type.

The following keywords for source segment type are provided: MAIN,

PROC, COMPOOL, DATA, COPY, LOCAL, and SUBR.

The J73 PSL must provide an accounting record to store statistical

data for report generation. The PSL will automatically collect statistics

during execution of the following directives: ADD, MODIFY, COMPILE,

and LOAD. A statistics segment is associated with each source segment.

The user has no direct access to the statistics segments. These segments

are generated automatically and are only readable in the form of a

management report generated by the REPORT directive. In the REPORT

directive, the user may specify whether statistics from all levels or

a range of levels, are to be used. Four types of reports are possible:

segment statistics summary, module statistics summary, program statistics

summary, and library summary. In the first three types, the user may

specify a name or receive a summary of the statistics of all segments,

modules, or programs. These reports may also be limited to a range of

library levels. The library summary consists of a two-page report

summarizing the contents of the library in use.

The SOW requires that the PSL be as machine-independent as possible,

with concentration of machine dependent software, minimizing the effort

to rehost the PSL. Machine dependent code in the implementation of the

PSL will be mostly isolated in routines for input/output management,

and tool interfaces. Interfaces for compilers and external tools con-

sist of datasets containing job control language to be used for spawned

job generation and routines which modify these interface datasets.

The J73 PSL must be independent of external software systems,

such as data base management systems. No external software systems

are used by this implementation.

There should be minimal revision of machine dependent parameters

required in order to rehost the J73 PSL. The isolation of machine

dependent parameters to a single compool or a few compools will

facilitate rehosting.

1-7

r

There should be a capability to al low interface with non-PSL ex-

ternal software testing tools, such as a code analyzer. The user should

have the option to store the results of the execution of the tool with-

in the PSL. External tools, like the non-default compilers and compiler

versions, may be interfaced through the PERFORM command. The user may

enter the results of the execution into the PSL with the IMPORT directive.

Options available for the external tool may be specified using the

OPTION parameters.

Text segments should be up to three pages long, at fifty lines of

standard card image format. There should be a text segment associated

with each source segment. The source and text segments should have the

same name. Transmission between library levels should move the source

and text segments together.

Editing of source and text segments should be possible using the

host text editor. The user may access copies of PSL database segments

which have been created in a special partitioned data set by the EXPORT

command. Later the host editor-modified copy of the text or source

segment may be returned to the PSL database by the IMPORT command.

There will be no statistical update of IMPORTed segments because there

is no assurance that the replacement text or source is what it claims

to be. Within PSL, there is a modify directive which can be used to

modify PSL segments, but is not at this time of comparable power with

the host text editors. Statistics are updated when the MODIFY directive

is used.

The PSL must provide for the definition of twenty keywords to be

used with TEXT segments. Each keyword must contain a maximum of fifteen

alphanumeric characters. Keywords are defined by the manager when he

creates and modifies the KEYWORDs special segment. A specific format
I

within this special segment defines the character strings which are the

keywords. The manager may redefine the keywords by MODIFYing the

KEYWORDs segment.

The PSL must provide a command to allow the user to search TEXT

segments throughout the PSL library for the occurrence of a keyword

1-8

and print out the results of that search. Upon a successful search for

the primary keyword, the data associated with secondary keywords would be

printed out. The implementation of the SEARCH directive provides the

user with a number of options. The search may be conducted for all

text segments in a PSL library, only the text segments on a given level,

or only the text segment associated with a given source segment. A

successful search can require not only that the primary keyword be

found, but that a character string occurring as a parameter in the

directive be in the text associated with the primary keyword. If

secondary keywords are included as parameters in the directive, the

text associated with the secondary keywords is printed out if the search

is successful.

A document function should be provided in the PSL which allows the

user to print textual information stored at any of the seven library

levels. The user may specify the following options: name(s) of the

text; library level(s); selection of data to be printed based on key-

words; up to three header lines; whether the header appears at the top

of the first page or at the top of every page; selection of page number-

ing range; selection of maximum number of lines per page (default fifty

including headers and blank lines); and selection, by line number, of

blank lines. The implementation uses the LIST directive. Besides
listing text segments, the LIST directive will also permit listing of

SOURCE and LISTING segments. The specific formatting for TEXT and SOURCE

segments will be controlled by subdirectives. A parameter of the LIST

directive is used to designate the type of segment being listed. In

addition to segment (SOURCE nr TEXT), module (all source segments
associated by !COPYs to makeup a source module), compile listing, load

listing, and PERFORM listing, there is also a capability for listing

a hierarchy of segments in a module.

The PSL must operate in both batch and interactive modes. All

capabilities should be available in each. In interactive mode, the

user executes the PSL interactively at a terminal. This means that the

PSL program executes time slices during the session and the user enters

1-9

- ---- --- - - -

directives and inputs to it at the terminal. Whenever a directive and

its associated parameters and keywords are input at the terminal, exe-

cution of the directive occurs immediately following input of this set

of data; a response, the JOBLOG, then appears at the terminal. In

batch mode, the user commands are placed in a file before the batch PSL

job is submitted.

The user should be able to display stored source and text data on

a terminal, modify the data, and restore the modified version within

the PSL. Display is accomplished by the LIST directive, with the list-

ing routed to the terminal. Modification can be done with the MODIFY

directive, which also restores the modified source or text. Alternatively,

the user may modify EXPORTed data using the available text editors while

outside the PSL and restore it to the PSL data base with the IMPORT

directive.

The user should be able to create and execute job streams, such as

a job stream to compile a source module, accessing source segments and

SYMTABs which may reside at various levels within a PSL library. The

user will accomplish'this by using the COMPILE, LOAD, and PERFORM

directives, which function as discussed above.

With these explicitly stated PSL design requirements, a study of

available state-of-the-art prograniing support libraries would be

necessary. SofTech subcontracted to the General Research Corporation

of Santa Barbara, California for this part of study effort. A general de-

scription of each PSL system studied will be discussed in the next section.

1.2 Study of PSL-like Systems

A study was made of PSL-like systems to investigate the possible

use of a single baseline for the J73 PSL and to identify techniques and

features which may be included from other successful PSL implementations.

The PSL-like systems were:

a. PAVE PAWS PSL, hosted on a CYBER 175.

b. Defense Mapping Agency (DMA) PSL, hosted on a Sperry Univac
1100 series machine.

1-10

_______._______

c. Microprocessor Software Engineering Facility (MSEF), hosted
on a Digital DECsystem-1O.

d. AFAL Software Development and Verification System (SDVS),
hosted on a Digital DECsystem-1O.

e. IBM Structured Programming Facility, hosted on IBM-370 or
equivalent machine.

f. The EXEC 8 OS hosted on a Sperry Univac 1100.

g. Bell Laboratories Programmers Work Bench (PWB) hosted on a
Digital PDP-11/70.

1.2.1 PAVE PAWS PSL.

The PAVE PAWS is a fixed base Phased Array Warning System utilized

for the detection and attack characterization of Submarine Launched

Ballistic Missiles (SLBMs) which penetrate the radar coverage. The

project produced approximately 211,000 lines of software, about 17,000

of which were devoted to PAVE PAWS PSL.

The PAVE PAWS PSL provided the PAVE PAWS development program with

the capabilities of configuration control, support software tool in-

vocation and management reporting in a batch operation environment.

Configuration management occurs in many forms, like the multi-level

library environment with command verbs supplied for library content

manipulation. A language preprocessor is supplied to add structured

programing constructs, copy segment processing, and program hierarchy

generation. Tools invoked by the PAVE PAWS PSL are limited to the
J3 Compiler, COMPASS ASSEMBLER, and COC linkage editors. Management

reports are based on statistical data generated for PAVE PAWS libraries,

programs or segments. The PSL control (control software) and PSL

functions (verb function) together comprise the module referred to as

the PAVE PAWS PSL. In addition, there are two other modules which,

while operationally separate from the PSL, are conceptually part of it.

The Language Pre-Compiler (LPC) is responsible for assembling an entire

program from the set of modules in it. The Management REPorting (MREP)

program is responsible for the producing all PSL reports.

1-II,

1.2.2 Description of the Microprocessor Software Engineering

Facility (MSEF)

MSEF is written in the programming language "C" and hosted on a

PDP-11/70 under the UNIX operating system. The MSEF provides UNIX

hosted support for the storage and organization of the components of

large systems of computer software. The MSEF assists project manage-

ment, configuration control, programming, implementation, testing, and

in-service upgrade of such systems. The MSEF acts as the framework

to support software development tools in a unified and coordinated

environment.

In practice, systems are built of many subsystems which, in turn,

are combinations of subroutines and other subsystems. Such multi-level

structuring helps to simplify and organize the overall project. This

multi-level (hierarchical) structure is also useful for organizing

ancillary information such as resource budgets, documentation, test

results, test scripts, and expected test results.

1.2.3 Software Design and Verification System (SDVS)

The Software Design Verification System (SDVS) is a support soft-

ware package specifically intended for testing and maintaining opera-

tional software. SDVS provides simulation capabilities and allows the

user to generate tests to exercise the operational software. About

20% of SDVS is devoted to Program Support Library functions, chiefly

configuration control and text editing.

In its implementation, eech software project assigns a person to

be SDVS data base manager. This person assigns space and names of all

modules to be used in the project. Files are source, object, load,

etc. with appropriate use conventions for each type of the file. There

is no allowance for text files per se. A specification file may be

created by the data base manager which will hold high level design

descriptions. These files are accessible only by the data base

manager and are therefore not text files containing a PDL or other de-

tailed design description which can be created and moved with the code

files.

1-12

i i - I I : *1i

All files and updates of files are stored indefinitely. Baselines,

called versions, are periodically established. Updates are stored in

the form of difference files, called revisions. While a hierarchy is

implicit in the ascending version and revision numbers, no difference

in access or use is inherent in SDVS.

Statistics on file access and usage are automatically collected.

The statistics collected are basic information on the time of day,

user identification and function performed (e.g., compile, link, etc.).

These statistics are collected and put into a single repository file

or data dump for every user within a project. Only the project SDVS

data base manager has access to this dump.

SDVS supports testing at various 'levels. Simulation languages were

created for instruction level (for a specific machine) and statement

level (for HOL implementations) simulations. The statement level

simulation created a series of commands which could be used to initialize

and activate collection of various forms of data. Conversational

language commands were also supplied to begin and end program execution

as well as provide conventional commands (IF, WHILE, etc.) to build

strings of test commands. Special commands were added to interact

with environment simulations so that test cases could be suspended

and rerun for verification of test results. These simulations are used

to do module test on host computers. Little statistical data is kept

on these module tests other than the user information contained in

the data base manager repository file. Aircraft simulations are also

supplied under SDVS with the capability of creating a flight scenario
and recording data in flight code modules as well as aircraft simula-

tion. Portions of the flight scenario can be recreated and rerun to

verify data of interest. SDVS also provides standard statistical

packages, as well as the ability to create special purpose diagnostic

packages, to analyze recorded data. Although the SDVS implementation

collected data, no routines were ever agreed upon to do statistical

analysis nor limit set on the number and type of data items to be

collected.

1-13

I i , I-]Il ... II .,r

1.2.4 IBM Structured Programming Facility (SPF)

The IBM is not a PSL, but provides an extremely convenient

method for file editing and job entry into the host OS. It does not

include any library control other than that inherent in the host OS

file structure.

In short, SPF is totally an IBM host OS-dependent system. It was

designed to facilitate IBM job entry by minimizing the typical IBM

user-hostile interface as well as "...to take advantage of the charac-

teristics of IBM 3270 display terminals..."

1.2.5 UNIX Programmer's Workbench (PWB)

UNIX/PWB is a system designed and implemented by BELL labs for

in-house work on DEC computers. It has found wide user acceptance for

several reasons.

The UNIX/PWB provides a highly interactive user interface. The

interactive text editors allow for manipulation of both source and

textual data. Multiple files can be displayed side by side on a CRT.

The system is rich in file manipulation commands and the user is also

able to create job streams.

There are also specific features integral to the UNIX design. A

separate configuration control tool is available with an accounting

directory containing problem reports. An unlimited hierarchy is

available with levels based on code maturity. The UNIX/PWB provides

support to various compiler versions (e.g., C, ASM, FORTRAN, COBOL,

and JOVIAL). Separate file name delegation for object (OBJ), exe-

cution (EXE) and documentation (TEXT) are provided and a search of

multiple files and a listing of the output results are also available.

1.2.6 EXEC 8 Operating System

EXEC 8 was included in the study because it had been claimed to

satisfy most of the requirements for DMA PSL. EXEC 8 does not meet

many of the requirements of the J73 PSL yet it is very well received
by the user of this system. It is an interactive system with a

1-14

• " III I I_ __

reasonable text editor which, while not as good as UNIX/PWB or the SPF

screen editors, is far better than the usual batch oriented editor. It is

possible to manipulate files with simple commands, to group associated

files together, and to create job stream files. Although EXEC 8 is not

a PSL but an operating system, it is easy to see how a machine-dependent

PSL could be constructed using UNIVAC system functions.

EXEC 8 does contain a file system which is easily stored, accessed

and modified. EXEC 8 also has a reasonable text editor and a method

of saving incremental changes.

EXEC 8 does not save user oriented statistics, management data or

source-associated text. It does not provide data security, keyword

processing, multi-level searches or text formatting. The UNIVAC EXEC

8 contains a four-level hierarchy. The first level is described by a

* qualifier which is usually the user job name, the second level is

described by a file name, the third level is the cycle or version, and

the fourth is the element. One paper suggested the qualifier could

be the project identifier and the cycle be used for version control.

Indeed, the file names could be assigned to different maturity stages

and the elements could contain the different types of source, object,

text, or data.

1-15

2.0 JOVIAL J73 PSL PROGRAMMING ENVIRONMENT

The JOVIAL J73 Programing Support Library (J73 PSI) is designed

to promote modern software engineering and management practices for J73

computer program developments. The PSL enhances software development

through the capabilities of:

a. Automated Configuration Control and Management

b. Invocation of J73 Development and Test Support Software

c. Enforcement of Top-Down Design and Development Through Program
Segmentation.

d. Seven Level Hierarchy of Code Development Maturity

e. Module and Hierarchy Listings

f. File and Command Authorization Checking

g. Multi-Level Management Reports on Program Development Status

2.1 Top-Down Programming and Segmentation

Top-Down programming is a method of designing (and implementing)

software through developing top level functions first. The details of

the program materialize through successive iterations of the problem.

For each iteration, known functions or newly specified subfunctions

are continually integrated into the program. One objective of this

method is to purposely break the program into readable blocks of code

that should not exceed a standard page length. Thumbing through

multiple pages of code for a single function is thus avoided and effi-

ciency is achieved. Program functions and subfunctions are abstractly

viewed as "black boxes." As program development proceeds, these

"boxes" are coded. The J73 PSL allows the user to perform Top-Down

Design and Development through segmentation. For a given main program

one and only one top level segment is allowable. Lower level segments

2-1

-- m m m m m mC.

which identify either a function or subfunction are placed in the

top level segment by a !COPY. The PSL automatically creates stubs for

these lower level functions. A stub can be simply viewed as a "black

box." The J73 PSL automatically creates a stub for ADD, IMPORT, and

MODIFY commands. A stub initially consists of a source segment, a

text segment, and a statistics segment.

2.2 Module and Hierarchy Listings

The primary difference which distinguishes top-down structured

programming from traditional programming methods is the ability to

generate and work with the program's logic structure. In this respect,

delegation of subprograms, etc. to programing team members is possible.

The J73 PSL provides LISTings of several types of which directly foster

top-down design and implementation. A listing of the type HIERARCHY

supplies an indented copy tree for a module. This is not a call

tree, since only COPY segments are in it (FIGURE 2-1). The J73 PSL

also provides listings for specific segments and modules, as well as

output listings from compilers, assemblers, linkers, and user-program

execution. A module listing is a depth-first order listing of all

segments (main and copy) in a module.

2.3 Hierarchical Library

The most noteworthy aspect of the J73 PSL is the feature of auto-

mated configuration control and management. Controls on the progression

of software are at the discretion of a single person, usually the com-

puter program manager. In this manner, program development, test, and

integration proceeds in a controlled and orderly fashion. The seven-

level hierarchical library structure is the primary vehicle for code

progression in the J73 PSL. Software segments are entered into the PSL

library using a user-specified name and user-specified level. Each

level in the PSL is separate and distinct, yet a given segment may

reside at multiple levels. For example, a segment may reside at both

levels four and five. Level five could be the qualification test

level and level four the "fix" level. Minor changes to the code could

2-2

Module: PSLIONE LEVEL: ONE

PSLIONE ONE

PSLITWO ONE

PSL'THREE TWO

PSLIFOUR TWO

PSL'FIVE ONE

PSL'SIX FOUR

PSL'SEVEN six

Figure 2-1 Hierarchy Listing

2-3

be performed at level four for code undergoing qualification testing.

Thus, to completely identify a segment in the PSL library, both the

segment longname and level must be specified. This provides a simple

mechanism for parallelism in development,.error correction, and version

modification. The levels and usage conventions for the PSL library are

shown in Figure 2-2. Important to this configuration hierarchy is the

need to move code from one level to another. A program element is

ready to change control level when it has satisfied predefined qualifi-

cation criteria and is reedy to be placed under more stringent change

control. The XMIT directive effects code movement from one level to

a higher level. XMIT will use the "drawdown" feature of the PSL to

construct the entire source module hierarchy. It will then move all

those segments up to the specified "to" level. The "automatic draw-

down" feature allows library operations to be addressed to a specific

library level and if the element does not exist at that level, success-

ively higher levels will be searched until the element is found. Once

the element is found it will be treated as if it were found at the

originally requested level. This is based upon the upward migration

of software through library levels and the recognition that all elements

above the requested level have already satisfied the functional bench-

mark associated with that level.

2.4 PSL Authorization Checking

The hierarchical nature of the PSL library system readily lends

itself to the systematic application of change control procedures.

Since the migration of programs from level to level requires that more

stringent benchmarks have been satisfied, the software stability (and

the corresponding authorization required to effect change) continually

increases from the lowest level to the highest. This is addressed in

the PSL through an authorization verification scheme which recognizes

the user-ID and restricts the operations and the library levels which

they may use. This scheme is based upon a combination of user identity

and organization and it disallows:

a. Operations on software which is not in the province of the

2-4

Highest, OEL D Iel ivery

most controlled

FRZ Freeze

TST Test

FIX

INT Integration

CPT j

Lowest, PRG Programmer
least controlled

Figure 2-2 PSL Levels

2-5

r

organization.

b. Transactions at library levels at which the user is not
authorized.

c. Execution of special PSL verbs for which the user is not
authorized.

Among other things, implementation of this authorization check may

prevent a programmer in one department from changing code belonging

to another department, inhibit the Development organization from

making changes to software which has been delivered to Test, prevent

Test from accessing any software which has not been delivered to them,

and disallow any source change activity (ADD, MODIFY) above the INT

level of the library.

2.5 Management Statistics Reporting

The J73 PSL maintains statistical data for each segment, module,

and library. Segment data is derived from the user-specified values

when the segment was ADDed (longname, shortname, language, segment type,

etc.) or computed automatically by the PSL (creation date, data and

time of last change, number of lines and user identification).

Four types of reports can be produced with the REPORT directive:

SEGMENT, MODULE, PROGRAM, and LIBRARY. Statistics pertaining to

individual segments, modules as compiled, programs as linked, or the

PSL library as a whole are used to generate the respective four kinds

of reports. Figures 2-3 through 2-6 illustrate the four report types.

2-6

_ ___

-A ___ ______

O p0 0 0 0

3.

.a _*

a 92aro

Iw-

i oft

.. m

a WI).MW
a W-

N N6
- -"

as- -2 -- -

MW WW "a -7~ S. a S. a ~~%
~ - a d6

P"

a.0.

a t
'LI

ag

ma

4n.4

La

I Ii l I

la -l St

Wa w -

00@ L~.16 (A6 M

dab

*2-8

Iw -

zI-.7 ao IA r

It C "

IxI
U:.i1.

- IQ

uC IC

U3 IA% w 4 i

C033
co a I

C4 DO

co -3
U)2 9

2.6 J73 PSL Directives

This section provides a brief descript'ion of each of the PSL

directives.
2.6.1 ADD

The ADD directive adds a new segment group to the library, consist-

ing of source, text, and statistics segments. Stubs are generated for

all !COPY segments in the added source segment.

2.6.2 CHECKPOINT

The CHECKPOINT directive creates a copy on tape of every file in

the PSL library being used.

2.6.3 COMPILE

The COMPILE directive spawns a batch job stream which invokes,

according to the language parameter in the segment's statistics, either

the default JOVIAL J73 compiler, the default FORTRAN compiler, or the

host assembler. The segment identified by <longname> is used as input.

Included segments are searched on multiple library levels if necessary.

The object module generated is saved under the same <longname> as the

source module for the main segment.

2.6.4 COPY

The COPY directive specifies that a code segment at a specific

level be copied to another segment and level. The names of the "from"

and "to" segments may be different.

2.6.5 EXPORT

The EXPORT directive copies a source segment to a sequential

file outside the PSL library.

2.6.6 IMPORT

The IMPORT directive copies a source or text segment into a PSL

library from an external partitioned data set.

2-10

-------------------- - w I

2.6.7 LIBRARY

The LIBRARY directive establishes a library to be used during the

current PSL session.

2.6.8 LIST

The LIST directive causes a listing to be produced. The list

type can be a segment, module, hierarchy, compile, load, or perform.

Source or text segments can be listed in segment and module listings.

2.6.9 LOAD

Using multiple-library level search, external references are re-

solved by the default linker and the resulting load module and listing

are entered into the PSL data base.

2.6.10 MODIFY

The MODIFY directive modifies a segment of source or text. Sub-

commands specify the editing to be done.

2.6.11 NEWLIB

The NEWLIB directive initializes a new PSL library. The user-ID

is subsequently used as the master key for that library.

2.6.12 PERFORM

The PERFORM directive invokes the external tool identified by

<external program name>, using the segment identified by <longname>

as input. User programs can be executed with the PERFORM.
9

2.6.13 PURGE

The PURGE directive deletes a segment group from the PSL library.

A segment group is all segments with a common longname and level.1r
2.6.14 .I

The QUIT directive allows normal termination of the current PSL

session.

2-11

2.6.15 REPORT

The REPORT directive produces a management report containing

statistical information pertaining to segments modules, programs or

library spec ified.

2.6.16 RESTORE

The RESTORE directive restores a PSL library from a checkpoint

file.

2.6.17 SEARCH

The SEARCH directive searches text segments for the specified

keyword and string. Where found, it causes a listing of the associated

data.

2.6.18 USER

The USER directive sets a default user-ID for a PSL session.

2.6.19 XMIT

The XMIT directive moves a module to a higher library level.

2-12

__ _v

3.0 JOVIAL J73 PSL CONFIGURATION CONTROL CAPABILITIES.

The automated configuration control capability of the J73 PSL will

provide the much needed development and maintenance support for JOVIAL

J73 programming projects. JOVIAL J73 has been designated by the Air

Force as the standard interim programming language for all embedded

computers used in avionic systems (including aircraft, missiles, and

munitions) until the DOD language, Ada, becomes available.

The following discussion is an approach to the transfer of J73

PSL technology. Here, a definition of configuration control and

management will be provided as a foundation for subsequent discussion.

Following the definition will be several discussions of J73 PSL capa-

bilities satisfying this definition.

3.1 Configuration Control

Configuration control may be defined as a methodology concerned

with procedures for controlling the contents of a software system -

a way of monitoring the status of system components, preserving the

integrity of released and developing versions of a software system,

and controlling the effects of change throughout the system.

3.2 Configuration Integrity

As shown in Figure 3-1, a library may be created for each project

with multiple libraries created for multiple projects. The project

manager must first create the library database using the NEWLIB

command. Each project is then allocated a library in which various

forms of data may be stored and manipulated. Seven data types may be

created and manipulated at each of seven project completion levels in

the library. The default levels may be used or other levels may be

defined by the project manager at library set-up time. This ability

to create and manipulate a database, define level usages and create

code hierarchies represents a set of implicit capabilities provided

by the J73 PSL, which allows project management to implement software

system control procedures. These software system control procedures

3-1

i 4

/
JECT C

PROJECT Bh S DTBS
PROJECT

DEL PSL DATABASE

FRZf -- - -

TST

FIX

INT

GRP

PR~j

ISTI TABL ONE[LL iOBJECT,~ PSL
STATISTICS LIBRARY

*T,'EXT

SOURCE

Figure 3-1 J73 PSL Database Structure

will assist the user in maintaining project visibility, software con-

figuration integrity, and system change control.

One J73 PSL procedure for controlling a configuration baseline of

a software system is the ability to back up a library on magnetic tape

with the CHECKPOINT command. This capability not only provides system

control, but also preserves the integrity of released and developing

versions of a software system by safeguarding the database against

computer failure. The RESTORE command is used to restore a PSL library

from a checkpoint file.

The USER command is yet another implicit way of controlling the

contents of a software system by preventing unauthorized access to data

in libraries. To obtain access to elements of the library, several

specific keys must be used, including: the user-ID (a unique user

identifier), the longname of the element (a name describing the purpose

of the element), the user level, the data type, (main, proc, compool,

subr, data, pdl, or other) the version and the language (J73, assembly,

3-2

or Programming Design Language (PDL)). The user-ID may be set by the

USER command for the entire session while project member is accessing a

designated library. When he QUITs the current session and invokes a

new LIBRARY, the project member must again declare his unique user-ID.

The other access keys are created as a result of the command syntax

and then used by the J73 PSL program to verify and restrict further

database manipulation.

Another feature of the J73 PSL which is important to configuration

control is the ability to maintain version and edition control of any

software system. Each time a segment is added or modified in the PSL

database, it is given a unique version and edition number. Only the

most current edition at a particular level of the library is available

for use by a team member. Additionally, management statistics are

updated automatically upon segment change to provide the visibility

needed for change control.

3.3 Change Control

The preservation of component integrity is an important and

valuable aspect of the J73 PSL. The J73 PSL supports integrity in

several ways through total system backup procedures, user access

restrictions, and automatic code transmission routines.

As previously discussed, the J73 PSL provides control over

different versions of programs/systems destruction of data through the

use of a back-up capability. The CHECKPOINT and RESTORE commands

allow the user to obtain a snapshot of a specified library that can

be returned to the system at a later time. The controls implicit in

the USER command provide protection of data from unauthorized update.

The J73 PSL data protection scheme provides a means to restrict not

only access to the levels within a library, but to the data types

within a level by restricting users to certain command verbs. Elements

of various types within the database that have the same longname and

level are defined as a segment group of the library. By specifying

the element's longname and level, a user may PURGE all data types

3-3

i i i J _ _ _ m LNiOUN

relating to that element, i.e., he can automatically delete the entire

segment group of the library. By specifying the element's longname
and level, a user may PURGE all data types relating to that element,

i.e., he can automatically delete the entire segment group. A user

makes use of this capability when creating and then destroying special

information for extemporaneous testing and does not 4ish to keep ex-

perimental information in the database for configuration review.

Privileged users may also XMIT a module from one level to the next

higher level which will automatically promote all other segment groups

in the module as well.

The J73 PSL also contains the capability to move a segment group

from a higher level to a lower level. If not all elements of a segment

exist on the level to which the user wishes to transmit the module,

the missing data will be made available at the lower level by automatic

drawdown when needed. This facility may be exercised by all users and

guarantees that unique configuration baselines will not be violated.

(Recall that restrictions based on user-ID and level are enforced such

that project team members of lower status cannot violate delivered or

tested elements of the library database.)

Another capability provided by the J73 PSL in support of configu-

ration control is the automatic recording and reporting of changes made

to the database elements. The vehicle for change effect control of

the database elements is the statistics file, in which various data

elements are stored for use by the management reporting function. These

statistics are available for segment, module, program, and library

summary reports by using the REPORT command.

Generally, a request for a summary-by-segment report would specify

the project for which the summary is dcired. If a project is not

specified, separate reports will be generated for all projects in the
library. The report may be restricted to segments in a range of

library levels. The total number of segment changes is reported as

well as the number of segment changes per version. The summary-by-

segment report provides project management with an effective way of

controlling changes.

t 3-

~3-4

The summary-by-program (or module) report is a similar report

based on program statistics automatically recorded in the library, and

may be obtained for only one or all programs within a range of levels.

The summary-by-library report is useful in that a composite list-

ing of each element of each library level is possible. The CHANGES

parameter is indicative of total changes made for all segments at a

specified library level and for a specified language.

3.4 Status Monitoring

The ability to monitor the status of system components with the

J73 PSL is primarily facilitated by the multi-level management reporting

capability described above. Essential to this reporting capability is

the seven-level hierarchy representing code completeness. This hier-

archy provides a means of formalizing all phases of the software de-

velopment life cycle from initial coding to software delivery. This

concept of the Top Down Structured Programming technology was developed

to impose Jiscipline on the traditional way of developing software.

The multi-level management reporting capability is supported by

the J73 PSL's capability to maintain an accounting record of statistical

data for management report generation. The J73 PSL will automatically

collect statistics during execution of the following directives: ADD,

MODIFY, COMPILE, and LOAD. A statistics segment is associated with

each source segment, each source module, and each load module. The

user does not have direct access to statistics segments. Statistics

segments are generated automatically and are only readable in the form

of a management report obtained through the use of the REPORT command.

When using the REPORT command, the user may specify whether statistics

from all levels or a range of levels are to be used. As previously

described, four types of reports are possible: segment statistic

summary, module statistics summary, program statistics summary or

library summary. In the first three types, the user may specify a

name or receive a summary of all segments, modules, or programs. The

library summary consists of a report summarizing the contents

of the library in use.

3-5

System component status monitoring is also provided through use

of the SEARCH command. A user (typically the manager) may SEARCH the

PSL database for keywords, which are defined by the manager at library

set-up time. Secondary keywords may be used to return a predetermined

collection of associated textual material. For example, a searched-

for keyword may be PURPOSE (of a programming module) with secondary

keywords INPUTS and OUTPUTS. The SEARCH command can be used to scan

the library for any or all of these keywords and the associated text

accompanying them. Additional information may also be given to narrow

the search, such as level or module name. The searched-for textual

information may be added to a management status data type and modified

for later use or listed out.

3-6

*._ , i l ll . .

4.0 DETAILED DESIGN

The configuration of the J73 PSL includes four independent

JOVIAL J73 programs, two FORTRAN programs, and the IBM utility

IEBCOPY, as well as external tools, compilers, linkers, and assemblers.

The four independent JOVIAL J73 programs are:

PSLMAIN - The largest program, this is what is considered The

PSL, although the other programs play important roles. Its

internal structure will be broken down into compilable modules

and explanations of each will be given below.

PRECOMP - This is a precompiler which processes !COPY statements

in JOVIAL J73, FORTRAN, and IBM assembler source modules, pro-

ducing a temporary sequential source input file for the compilers

and assembler. It also processes compool directives for JOVIAL

J73 source modules. Use of this precompiler frees the PSL

user from having to know DDNAMEs for compool symbol tables

and copy files. Also, it makes it unnecessary to change member

names in code when it is transmitted to other levels. The COPY

processing allows longer modules than 100 lines in each of the

three source languages. Precomp also generates some compile

statistics.

PRELINK - Prelink processes a linker control segment to generate

INCLUDE or LIBRARY linker control statements prior to linking.

The user must place in the linker control source segment the

longnames of all modules and compools needed for the link. The

use of this prelinker frees the PSL user from having to know

DDNAMEs and from having to change the member names in INCLUDE

and LIBRARY statements when code is transmitted.

* UPDATE - Update analyzes compiler and linker output to generate

values for compile and load statistics.

The two independent FORTRAN programs are ECHO and FECHO, which

are needed to reformat the SYSPRINT output from compilers and the IBM

linker, respectively, to route this output into the PSL database.

4-1

IEBCOPY is used in spawned batch jobs to reformat some compiler

outputs for routing into the PSL database. It is also used for back-

ing up a PSL library to tape (CHECKPOINT directive) and for restoring

the library to disk (RESTORE). Output listings routed to the printer

are generated using IEBCOPY through a spawned batch job originated

by the LIST directive. Routing of REPORT output is done the same

way.

External tools, compilers, and assemblers invoked in spawned

batch jobs through the PSL include:

* the SEA JOVIAL J73 compiler

0 the FORTRAN IV Extended H Compiler

* the IBM assembler

* the IBM linker

* the JOCIT JOVIAL J73 compiler

* the J73 Automatic Verification System
* the J73 Code Auditor

* the J73 1750A cross-compiler

* the J73 1750A linker
* the J73 1750A assembler

* the J73 1750A simulator

The main PSL program, PSLMAIN, consists of 81 separately

compilable modules. These can be broken down by language as follows:
* JOVIAL J73 65 (7 compools)

* FORTRAN 8

* IBM assembler 8

The 57 executable JOVIAL J73 source modules can be classified in one

of the following catagories:
* Control and major support routines

* Directive execution routines
0 Minor support routines

Figure 4-1 shows the hierarchy of the major modules in PSLMAIN.

4
4-2

Cf

Lii U

4-33

MO

Control and major support routines

PSL'CONTROL - This is the top level PROGRAM module of PSLMAIN.

It initializes the data structures, controls directive verb

parsing, routes control to directive execution routines, and

provides error recovery from invalid directive syntax.

PSL'DATA'STORAGE'AND'RETRIEVAL - All input and output, as

well as querying of the in-core directory, goes through this

control module. It calls the major assembler routine PSL'PERFORM

to actually do the I/O operations. Functions provided by

PSL' DATA' STORAGE' AND'RETRIEVAL include:

* FIND - locate and read a source or text segment at or

above a given level.
0 READ - read a source or text segment at a given level.

* WRITE - write or replace a source or text segment at a given

level.
* QUERY - locate and read the statistics of a segment with a

given longname at or above a given level.

* PURGE - delete all segments of all types having a given

longname and level.
* CLOSE - close all open PSL database files.

* FIRST - return the first member name in the in-core

directory.

* NEXT - return the next member name in the in-core directory

or return end of file.

6 PSL'MESSAGE - All joblog messages and prompts are controlled by

this routine. It provides facilities for insertion of a string

into a message.

PSL'AUTHORIZATION'CHECKER - Access to levels for reading and

writing, access to directive verbs, and access to the database

are controlled by this routine. In its initial call it reads

the AUTHORIZATIONS source segment to initialize its static

tables. PSL'AUTHORIZATIONS also validates the USERID parameter

for the USER directive.

4-4

~-

0 PSL'DIRECTIVE'CARD'PARSER - This is a general directive parser

which checks directive syntax against tables indicating types

of parameters and whether they are optional or required. The

syntax of each parameter type is verified and appropriate

error messages are issued.

* PSL'GENERATE'STUBS - This routine processes source code, parsing

for the string '!COPY' followed by a longname. It generates a

stub for that longname, using for its level the same level

as that of the source code it parsed. If a segment group

already exists for the COPY longname, a message is issued.

0 PSL'GENERATE'HIERARCHY - A recursive routine, PSL'GENERATE'

HIERARCHY builds a stack containing all the longnames, shortnames,

levels, and copy nesting depths for segments in a module. It is

used in the LIST, REPORT, and SEARCH directives, as well as in

the precompiler.

0 PSL'SPAWN - Spawn generates batch background jobs for the

following directives: COMPILE, LOAD, PERFORM, LIST, REPORT,

CHECKPOINT, and RESTORE. It looks for certain strings in JCL

templates and substitutes values from a global table, placed

there by the caller. The resulting JCL file is written to the

internal reader (for batch execution) or to a file (for inter-

active execution).

Directive Execution Routines

All directive execution routines call PSL'DIRECTIVE'CARDPARSER

to check syntax. Then, if applicable, they call PSL'AUTHORIZATION'

CHECKER to check access. Semantics is then checked, and if there is I
no conflict, the directive is carried out. If there is an error at

any point in the syntax, access, or semantics checking, the directive
processing is terminated. Some message indicating affirmative action

or denial of the directive will always be given.

4-5

_ mA

A very brief description of each directive execution routine is

given below:

PSL'ADD - Semantics checks include:

0 For a top level ADD, unique shortname.

* For a non top level ADD, stub must exist, language must

match for source, type must be PROC or LOCAL for source.

For a top level ADD, a segment group is created in the database

consisting of SOURCE, TEXT, and STATISTICS segments. For a

non-top level ADD, the stub segment is replaced. Text following

the directive is checked for size and parsed for !COPYs.

Statistics are initialized. Stubs are generated for !COPYs.

PSL'CHECKPOINT - A job is generated to unload the currently used

PSL library to the indicated tape.

PSL'COMPILE - A job is generated to compile or assemble the

source module. The language of the source module determines

which compiler or assembler is used. Options from the directive

are placed in the generated job. Semantics checks include find-

ing the module's top level segment on the given level, with the

language JOVIAL, ASM, or FORTRAN.

* PSLICOPY - Semantics checks include:

* to-level less than or equal to from-level.

* to-longname does not exist on the to-level.

A copy of the source, text and statistics segments is made at

the to-level. If the longname is not changed, only the level

will be changed in the stats. If the longname is chanled, stats

are reinitialized.

* PSL'IMPORT - Semantics checks include:

* If not a REPLACE, shortname must be unique.

* For a REPLACE, segment being replaced must exist on the

level given.

* If the member name of the source data segment in the external

* , POS is not specified, one is generated as it would be in the

7 PSL. The segment in the external POS must exist.

4-6

ihe IMPORTed source data is parsed for COPYs and stubs are

generated, as in PSL'ADD. Statistics are Initialized. For a

REPLACE, statistics are reinitialized. For a REPLACE, only the

segment IMPORTed is changed. No change is made in the TEXT

segment for the REPLACE of a source segment. If the IMPORT is

not a REPLACE, a new source, text, and stats segment group is

created, as in PSL'ADD.

PSL'EXPORT - Semantics checks include finding the segment to be

exported on the given level. If no filename for the external

member is given, one is generated. The source or text segment

is copied into the external PDS member.

PSL'LIBRARY - The libname parameter is used to override that in

the profile, but the libname parameter must agree with the name

used with files ALLOCATEd or used in DDNAMEs, for interactive

and batch execution, respectively. AUTHORIZATIONS and KEYWORDS

segments are accessed to set values in internal tables.

PSL'LIST - This directive provides six kinds of listings: a

single source or text segment, all the source or text segments

in a module, the copy hierarchy of a module, or one of the output

listings (compile, link, or perform). Five subdirectives

(#HEADER, #NONAME, #NUMBERING, #SPACING, #LINES) provide format

control. Routing to the printer is possible. Routed listings

result in a spawned batch job. FORTRAN and IBM assembler

routines are used for I/0.

* PSLILOAD - Semantics checks include verifying the existence of

the top level source segment at the given level and the existence

of the source segment for link control input, of language LINK

at the same level. A job is generated to invoke the linker

with the run-time library appropriate to the language of the

source module.

4-7

.......... .j j

* PSL'MODIFY - Semantics check includes verifying the existence

of the segment at the given level. The segment is read into

a buffer. Five subdirectives (#INSERT, #DELETE, #CHANGE, #LIST,

and #END) may be used to edit the segment. Execution of the

segment in the database. Statistics are updated.

PSL'NEWLIB - This directive initializes an empty library that

has been created using system procedures. Source and text

stubs for AUTHORIZATIONS and KEYWORDS are created. The userid

parameter is used as the master key and stored in the statistics

segment for AUTHORIZATIONS. PSL'NEWLIB calls PSL'AUTHORIZATION'

CHECKER to initialize the internal tables, but there is no data

in the AUTHORIZATIONS source segment at this time, so only the

master key is authorized for this session. Similarly, the KEY-

WORDS segment is still a stub, so the default level names and no

keywords are in force.

* PSL'PERFORM'DIRECTIVE - Semantics checks are similar to those

for PSL'COMPILE and PSL'LOAD. A job is spawned to execute

the indicated external tool or to execute the user's load

module (external-tool-type EXECUTE). Output may be routed into

the PSL (the default) or to the PRINTER and external files. The

PSL'PERFORM module is supported by 9 other modules:

PSL'EXECUTE, PSL'LINK'JOCIT, PSL'JOCIT'COMPILER, PSL'1750A'

COMPILER, PSL'JAVS, PSL'J73'CODE'AUDITOR, PSL'1750A'LINK,

PSL'1750A'SIMULATOR, and PSL'1750A'ASSEMBLER. These modules

define values for substitution into the templates.

PSL'PURGE - This routine calls PSL'DATA'STORAGE'AND'RETRIEVAL

to delete all segments with a given member name (derived from

given longname and level).

QUIT - Quit terminates a PSL user session and returns to the

TSO mode.

I

0 PSL'REPORT - The report routine generates four types of reports:

SEGMENT - individual segment statistics are displayed

and summarized

MODULE - compile statistics are displayed and summarized

PROGRAM - load statistics are displayed and summarized

LIBRARY - overall PSL library statistics are generated

and displayed in several tables

The routine makes use of two optional level parameters and a

parameter which can either be the longname of a module, or a

four-character CPCG. These parameters can limit the range of

the reports.

Reports can be routed to the printer by spawning a batch job

to copy the generated output.

0 PSL'RESTORE - Restore generates a batch job to copy the backed-

up POS's of a CHECKPOINTed PSL library from tape to disk. The

name must be changed (unless the old PSL library was deleted,

which is dangerous), and the master key can be changed.

0 PSL'SEARCH - Search makes use of the keywords in TEXT segments

to print selected information from the TEXT segments. Parameters

of the directive control the search algorithm and the material

to be printed.

* PSL'USER - User sets the default userid and prints a message

telling what the current default is. If desired, only the

message can be printed, with no change of the default.

* PSL'XMIT - Semantics checks include existence of top level

segment on from level and to-level greater than from-level.

Write access at to-level is required. A module PSL'XMIT'SEGMENT

is called to perform the copy and purge operation.

Minor Support Routines

* PSL'FLUSH'INPUT'CARO - Used to recover from directive aborts.

• PSL'SCAN'ASCII'STRING - Scanner for directive input, returns

tokens and delimiters, keeps track of scan of record.

4-9

m 4.' .

0 PSL'FETCH'DIRECTIVE'INPUT - Returns a directive verb from an

input record.

0 PSL'FIND'ASCII'KEYWORD - Scanner which searches directive verb

list.

* PSL'CONVERT'HEX'BEAD - Converts hexadecimal alphanumeric

characters to binary numbers. Used when reading function masks

in PSL' AUTHORI ZATION'CHECKER.

* PSL'EXTERNAL'LONGNAME'VALID - Checks syntax of PDS member names.

0 PSL'CARD'BUFFER - Interface for obtaining contents of three

source buffers.

* PSL'DATE - Returns date.

* PSL'TIME - Returns time.

0 PSL'KEYWORD'INDEX - Returns subscript of keyword in table.

* PSL'CONVERT'CHAR'TO'DGT - Converts character to digit for

numbers 0 to 9999999.

* PSLICONVERT'CHAR'TO'DGT1 - Same as above, but not in a recursive

loop with PSL'MESSAGE.

* PSL'ASSIGN'BFR - Interface for assigning to three buffers.

* PSL'CREATE'LIST'MEMBER - Creates member names.

* PSL'READ'INPUT'CARD - Gets a record of directive input.

* PSL'CONVERT'DIGIT'TO'CHAR - Converts numbers to characters for

insertion into messages.

0 PSL'CONVERT'DGT'TO'CHAR - Converts a decimal number to a charac-

ter string and returns the length of the string.

0 PSL'CONVERT'HEX'CHAR'STRING - Converts a hex character string

to a decimal integer.

0 PSL'XMIT'SEG - moves a segment group from one level to a

higher level.

4-10

7 ,7i(j m

a PSL'JOCIT'COMPILER - modifies JOCIT compile template.

* PSL'CREATE'LISTMEMBER - generates a member name for a member

of the LIST POS.

6 PSL'EXECUTE - modifies EXECUTE template.

* PSL'LINK'JOCIT - modifies JOCIT link template.

o PSL'1750A'COMPILER - would modify 1750A compiler template.

0 PSL'J73AVS - would modify J73 AVS tamplate.

0 PSL'J73'CODE'AUDITOR - would modify J73 code auditor template.

* PSL'1750A'LINK - would modify 1750A linker template.

0 PSL'1750A'SIMULATOR - would modify 1750 simulator template.

* PSL'1750A'ASSE4BLER - would modify 1750A assembler template.

* UPDATE'SCANNER - examines output listings for UPDATE.

* PSL'SCANNER - same as PSL'SCAN'ASCII'STRING except no message

#213.

* PSL'TEMP'CARD'BUFFER - function returns contents of three

temporary buffers.

4-11

FORTRAN modules

INSTR - Reads an 80-column record.

OUTSTR - Writes an 80-column record, with carriage control.

TIME - Returns time and date.

WRTPCL -Writes an 80-column record, without carriage control.

RWIND -Rewinds a device.

OUTF -Writqj a 133-column recordwith carriage control.

ROLIST - Rea a 133-column record. (Part of UPDATE.)

MDLIST - Write an 80-column source record with a line number.

WRTSP - Write$ an 80-column record for Pk'.SPAWN.

ECHO - Copies SYSPRINT output to PSL LIST PDS. (Independent program.)

FECHO - Copie8 PSL LIST POS Segment to printer. (Independent program.)

ASSEMBLER modules

PSLIPERFORM - Does all I/O for the PSI. database. Performs the

functions that PSI'DATAISTORAGE 'AND' RETRIEVAL provides.

PSL'BUILD'D!RECTORY - Builds an in-core directory by reading

the directory of the STATS PDS.

PSL'EXTERNALIFILE'INTERFACE - Performs I/O for external P05

for IMPORT and EXPORT.

SYSTIM - Generates time and date.

ASCII -Converts E3CDIC to ASCII.

EBCDIC -Converts ASCII to EBCDIC.

PSL'READ'I.ISTING - Reads a 30 record block of 133-column records.
a PSLREADlTEMPLATE -Read a JCL template.

4-12

5.0 TESTING

Code was tested in three phases: unit, integration, and qualifi-

cation. The same criteria were used for each phase. Both legal and

illegal inputs were tested. Semantics were tested, and the full

range of parameters were used to test boundary conditions. Attempts

were made to trace execution through all major branches of the code.

Unit testing proceeded throughout the PSL development. Individ-

ual modules were unit tested, either with drivers and stubs, or with

the top level acting as a top-down driver. As stubs were replaced

by tested routines, the use of stubs diminished. This was especially

true when the major service routines, such as PSL'DATA'STORAGE'AND'

RETRIEVAL and PSL'AUTHORIZATION'CHECKER were completed. Unit testing

then shaded into integration testing.

Integration testing involved executing the main PSL program

as a whole, with undeveloped portions stubbed out. In addition to

the criteria discussed above for unit testing, integration testing

also tested interfaces between modules. Misinterpretation of inputs

and outputs to modules, which is not apparent during unit testing,

was immediately discovered during this phase of the testing. When-

ever a new module or modules were introduced into the load module

used for integration testing, tests were repeated to insure that the

new code did not degrade the performance of the PSL.

Concurrency tests were carried out to explore the possibility

of contention. If was decided that few or no problems at all with

concurrency exist. Attempts were made to create a problem by having

parallel PSL sessions operate on the same seqments concurrently, but

no difficulties came to light. However, during the training class,

it was discovered that ADDS in parallel sessions could override each

other.

5-1

Qualification testing took place d'uring the week of October 26-30,

1981. The Test Plan, completed in September 1981, served as a

basis for the qulaification tests. Again, the types of tests fall

into four catagories: legal inputs, illegal inputs, correct

execution (semantics tests), and capacity and constraint tests. The

tests were derived from the Statement of Work. Testing techniques

ranged from visual inspection of code and documentation to batch

and interactive operation, parallel sessions, and use of external

tools (text editor, etc.) to provide the test results.

6.0 USER INDOCTRINATION

A training class for twenty persons was held at ASD on October

20-24, 1981. During the first two days an extensive set of view-

graphs and a tutorial made from the viewgraphs were used as a basis

for lectures. The lecture topics were:

* What is a Program Support Library?

* Configuration Management and Control.

* J73 PSL Definitions.
* The J73 PSL Database.

• Introduction to directives; general syntax and operation.

* Detailed discussion of the 19 directives.

* Control of the PSL; AUTHORIZATIONS and KEYWORDS.

* Usage conventions.

The third and fourth day were primarily laboratory, in which
the attendees used the PSL on six terminals at ASD. The objectives

of the third day in the laboratory were to generate source code,

compile, link, and execute it within a pre-existing PSL library.

Directives used during this program development phase included:

ADD, COMPILE, COPY, EXPORT, IMPORT, LIBRARY, LIST, LOAD, MODIFY,

PERFORM, PURGE, QUIT, and USER. The last day in laboratory emphasized

the management aspects of the PSL. The following directives were

6-1

either used by those in the class, or demonstrated, in cases where

it would have been impractical for each person to use them: NEWLIB,

CHECKPOINT, RESTORE, XMIT, SEARCH, and REPORT. Setting up the TSO

procedures, files, and JCL to implement tne PSL were also discussed

on this last day.

Forms were'provided on which suggestions for improvement of the

PSL were requested.

7.0 SUGGESTED ENHANCEMENTS

This is a list of possible enhancements to the JOVIAL J73

Programming Support Library. The enchancements are divided into four

catagories:

0 major enhancements, involving new design;

* minor enhancements which can be implemented easily with the

present design;
0 features already designed but unimplemented due to lack of

hours under the development contract;
* important bugs in the present PSL which will require major

revision in order to be fixed.

Each category is elaborated below.

7.1 Major Enhancements Requiring New Design

7.1.1 HELP/Tutorial facility. A group of segments in the user's PSL

library could contain PSL syntax and semantics. However, a more

effective design would involve a series of menus, permitting the

user to quickly locate the needed information. The menu approach

can also serve as a tutorial for persons unfamiliar with the PSL.

7.1.2 Traceability Reports. A report could be generated which would map
requirements to code. Text files would be accessed, as well as

statistics segments.

7-1

o ,n.4

7.1.3 Software Problem Reports. SPR's could be generated, using

user input, statistics, and other PSL-generated information.

Prompts for an interactive user can facilitate filing complete

reports. The existing authorization and configuration controls

will apply.

7.1.4 Directory Command. This command is very much needed so the

user can keep track of longnames of segments. It could be

implemented as an option of the REPORT directive to take advan-

tage of that directive's discrimination parameters for level,

longname, TEXT, userid, and CPCG. However, this might inter-

fere with effective authorization control with respect to the

REPORT directive. Perhaps a new directive should be designed

for this function.

7.1.5 Edit Capability for Listings. It would be helpful to be able

to search for compiler error messages In compile listings,

for example.

7.1.6 Reduction of Load Module Size. One possible savings in load

module size might be to eliminate the redundant copy of PSL

longname defines which occurs in every compilable module of

the PSL.

7.1.7 An Enhanced Text Editor. Some or all of the following features

might be added to the existing MODIFY directive:

a. numbering which is not automatic and consecutive integers.

b. redesign the CHANGE subdirective, permitting change of a

single occurrence of a string in a line of text.

c. MOVE subdirective.

d. COPY subdirective.

e. control of verification echoes.

f. an ALTER subdirective which permits insertion or change of

characters by position rather than string replacement.

7-2

- ,(.I~ -

7.1.8 Improved Tool Interfaces. External files could be employed in some

applications. For example, external files could be used as input

to the EXECUTE function of the PERFORM directive. Alternatively,

EXECUTE input segments could be redesigned to permit !COPY segments,

to get around the limit of 100 lines imposed by the PSL.

7.1.9 Data Protection. Investigate the possibility of data protection

using system functions.

7.1.10 Direct Use of System Editors. Investigate the possibility of

executing TSO Edit and Clemson editors directly, without exit from

the PSL, by using the assembler LINK macro.

7.1.11 Direct Interactive Job Submission. Investigate the possibility of

submitting batch jobs interactively without exiting the PSL. (TSO

Edit and Clemson editor can do this.)

7.2 Minor Enhancements Which Can Be Implemented Under the Present Design.

7.2.1 Improved Messages.

7.2.2 Stand-Alone FORTRAN and ASSEMBLER Batch Execution. Presently,

these languages can only be used to provide support procedures

for J73. Additional link templates would be needed to execute

a FORTRAN or assembler program on its own.

7.2.3 Abbreviations for Commands and Parameters.

7.2.4 Lower Overhead for Entry to the PSL. Due to the necessity of

exiting the PSL to submit batch jobs during an interactive session,

one must repeatedly enter the LIBRARY and USER directives. Even

if a way is found to avoid having to exit the PSL to submit jobs, it

will still be necessary to exit the PSL to examine JCL output from

those batch jobs. A default scheme for the LIBRARY and USER

directives, and perhaps level as well, would be desirable. This

enhancement may not be quite so minor.

7-3

q k. L

7.3 Unimplemented Features.

7.3.1 Changing the Master Key with the RESTORE Directive.

7.3.2 Make the Link Control Segment in LOAD Optional.

7.3.3 Implement the JAVS Interface.

7.3.4 Implement the 1750A Tools Interfaces.

7.3.5 Implement the Code Auditor Interface.

7.3.6 Route Results of REPORT and LIST Directives to the Printer.

7.3.7 Implement the EXTRN Routing Parameter in PERFORM.

7.3.8 Route JOCIT Compile Output into the PSL Database.

7.4 Persistent Bugs.

7.4.1 Parallel ADD. During the training class, it was discovered that

the PSL design did not reinitialize the in-core directory. Thus,

persons using the same PSL library in parallel sessions crash

each other's segments when they use the ADD directive. The

solution to the problem involves assembler programming.

7.4.2 PSL Library Capacity. Although the design calls for a capacity

of 1000 segments in a PSL library, the implementation seems to

permit only about 225. There may be a simple solution, involving

a change to one parameter, but the real problem is not yet

understood.

7.4.3 Formatting Problem in COMPILE, PERFORM, and LOAD Listings.

These listings currently do not have the correct appearance,

suggesting that there is an incompatible record length in one

of the PSL Modules.

7

7-4

*..... ,-j

we
~2W

